Genetic polymorphisms of manganese-superoxide dismutase and glutathione-S-transferase in chronic alcoholic pancreatitis.

نویسندگان

  • Christoph H Osterreicher
  • Jürgen Schultheiss
  • Markus Wehler
  • Nils Homann
  • Claus Hellerbrand
  • Beat Künzli
  • Helmut Friess
  • Helmut K Seitz
  • Felix Stickel
چکیده

Chronic alcohol consumption is a major risk factor for the development of chronic pancreatitis. However, chronic pancreatitis occurs only in a minority of heavy drinkers. This variability may be due to yet unidentified genetic factors. Several enzymes involved in the degradation of reactive oxidants and xenobiotics, such as glutathione-S-transferase P1 (GSTP1) and manganese-superoxide dismutase (MnSOD) reveal functional polymorphisms that affect the antioxidative capacity and may therefore modulate the development of chronic pancreatitis and long-term complications like endocrine and exocrine pancreatic insufficiency. Two functional polymorphisms of the MnSOD and the GSTP1 gene were assessed by polymerase chain reaction and restriction fragment length polymorphism in 165 patients with chronic alcoholic pancreatitis, 140 alcoholics without evidence of pancreatic disease and 160 healthy control subjects. The distribution of GSTP1 and MnSOD genotypes were in Hardy-Weinberg equilibrium in the total cohort. Genotype and allele frequencies for both genes were not statistically different between the three groups. Although genotype MnSOD Ala/Val was seemingly associated with the presence of exocrine pancreatic insufficiency, this subgroup was too small and the association statistically underpowered. None of the tested genotypes affected the development of endocrine pancreatic insufficiency. Polymorphisms of MnSOD and GSTP1 are not associated with chronic alcoholic pancreatitis. The present data emphasize the need for stringently designed candidate gene association studies with well-characterized cases and controls and sufficient statistical power to exclude chance observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development in Patients with Alcohol-Induced Cirrhosis Hepatic Iron Accumulation and Hepatocellular Carcinoma Genetic Polymorphisms in Antioxidant Enzymes Modulate

Manganese superoxide dismutase (MnSOD) converts the superoxide anion into H2O2, which, unless it is detoxified by glutathione peroxidase 1 (GPx1), can increase hepatic iron and can react with iron to form genotoxic compounds. We investigated the role of Ala/Val-MnSOD and Pro/Leu-GPx1 polymorphisms on hepatic iron accumulation and hepatocellular carcinoma development in patients with alcoholic c...

متن کامل

Genetic polymorphisms in antioxidant enzymes modulate hepatic iron accumulation and hepatocellular carcinoma development in patients with alcohol-induced cirrhosis.

Manganese superoxide dismutase (MnSOD) converts the superoxide anion into H(2)O(2), which, unless it is detoxified by glutathione peroxidase 1 (GPx1), can increase hepatic iron and can react with iron to form genotoxic compounds. We investigated the role of Ala/Val-MnSOD and Pro/Leu-GPx1 polymorphisms on hepatic iron accumulation and hepatocellular carcinoma development in patients with alcohol...

متن کامل

Alteration of Endogenous Glutathione Peroxidase, Manganese Superoxide Dismutase, and Glutathione Transferase Activity in Cells Transfected with a Copper-Zinc Superoxide Dismutase Expression Vector

Transfection of a human pSV2 (copper-zinc) superoxide dismutase expression vector into murine fibroblasts resulted in stable clones producing increased amounts of copper-zinc superoxide dismutase. A marked increase in endogenous glutathione peroxidase activity (up to 285%) and a smaller increase in glutathione transferase activity (up to 16%) also occurred. Manganese superoxide dismutase activi...

متن کامل

Lack of association between antioxidant gene polymorphisms and progressive massive fibrosis in coal miners.

BACKGROUND Oxidative stress plays a major role in the pathogenesis of interstitial lung diseases. The antioxidant enzymes glutathione S-transferases (GST) and manganese superoxide dismutase (MnSOD) are important components of lung defence against oxidative stress, and polymorphisms in the genes which regulate their expression may represent important disease modifiers. METHODS A matched case-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mutagenesis

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2007